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Note 

Iterative Solution of Homogeneous Integral Equations 

A method is proposed for solving homogeneous Fredholm integral equations of the second 
kind which relies on rewriting such equations as equivalent inhomogeneous Fredholm integral 
equations of the second kind with “weaker” kernels. Then the usual techniques for solving 
inhomogeneous equations can be used in the present case. In particular a recently proposed 
method for iterative Neumann series solution of inhomogeneous equations appears to be 
natural and very suitable for this purpose. The method is illustrated numerically using the 
iterative Neumann series solution of the equivalent inhomogeneous equation. 

1. INTRODUCTION 

In this paper we develop a new method for the numerical solution of homogeneous 
Fredholm integral equations of the second kind [ 1,2] for the unknown function y(x) 

Y(X) = 1 1 b m, z) Y(Z) dz, a<x<b, (1.1) 
a 

or, in schematic operator notation, 

Y = AKY, (1.2) 

where y is a real or complex function in L’(a, b) and K is a Fredholm kernel. As the 
equation is of the Fredholm type, the Fredholm alternative is valid and Eq. (1.1) can 
be uniformly approximated by a homogeneous matrix equation of finite rank, which 
can be solved by standard techniques. But in the case of a realistic problem the 
dimension of the resulting matrix equation could be large and an eigenfunction 
problem involving a large matrix is not a trivial numerical task. 

Homogeneous equations of this type appear in various areas of physics so we 
present a general account of the method without considering a special problem of 
interest in physics. An interesting application could be the energy eigenfunction 
problem, in quantum mechanics. 

Here we rewrite Eq. (1.1) in the form of an equivalent inhomogeneous Fredholm 
integral eqnation of the second kind, which can be solved by standard methods. The 
equivalence befwee~ the homogeneous and the inhomogeneous equation is discussed. 
The equivalent inhomogeneous equation has a “weaker” kernel and a recently 
proposed method [3] for iterative solution of inhomogeneous equations appears to be 
attractive for our purp.ose. The method is illustrated numerically in few cases using 

189 
0021.9991/81/090189-05$02.00/O 

Copyright 0 1981 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



190 SADHAN K. ADHIKARI 

the iterative Neumann series solution of the equivalent inhomogeneous equation. We 
also indicate how we can improve the convergence of the iterative scheme. 

In Section 2 we present and discuss the method and illustrate it numerically. In 
Section 3 we present a brief summary and concluding remarks. 

2. THE METHOD 

The method is based on the following simple algebraic manipulation. The equation 
we would like to solve is 

Y(X) = A (K(x, z) Y(Z) d., a<x<b, (2.1) 

where in Eq. (2.1) and in the rest of the paper the integration limits are from a to b 
unless otherwise specified. Normalize y(x) such that 

J . Y(X) Y(X) dx = 1, (2.2) 

where y(x) is an arbitrary function to be defined later. Using Eqs. (2.1) and (2.2) we 
have 

Y(X) = =(x, zo) + A ( K’(x, z) y(z) dz, (2.3) 

where 

K’(x, z) = K(x, z) - K(x, z,,) y(z), (2.4) 

and zO is an arbitrary chosen point in the interval (a, b). With the normalization given 
by Eq. (2.2) the solution y(x) of Eq. (2.1) satisfies the equivalent inhomogeneous 
equation (2.3). 

Note that Eq. (2.1) has solutions for certain selected values of L, namely, when the 
operator AK has one of its eigenvalues equal to unity. Equation (2.3), being an 
inhomogeneous equation, has a unique solution for all d unless its kernel has an 
eigenvalue equal to unity. An interesting question to ask at this stage is how, by 
solving Eq. (2.3), can we calculate the values of 1 for which Eq. (2.1) has a solution 
and also find the solution of Eq. (2.1) when it exists. By construction all the solutions 
of Eq. (2.3) which satisfy Eq. (2.2) are solutions of Eq. (2.1). So one should solve 
Eq. (2.3) for a particular ,4 and check whether this solution also satisfies Eq. (2.2). If 
it does, then for this value of A, Eq. (2.1) has a solution which is identical to the 
solution of Eq. (2.3). Alternatively if the value of 1 for which Eq. (2.1) has a solution 
is given then for this value of 1 the solution of Eq. (2.3) satisfies Eqs. (2.1) and (2.2). 

Equation (2.3) can be solved by standard methods as the Fredholm alternative is 
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valid. However, the form of Eq. (2.3) is such that the iterative methods formulated in 
Ref. [3] should be applicable. Let [3] 

Y(Z) = ( w(x) qx, z) K(x, zo) dx 
.f w(x) K(x, zo) K(x, zo) dx ’ 

(2.5) 

and choose w(x) =x”, where n is a small positive or negative integer provided that 
the integrals in Eq. (2.5) remain finite for such a choice. 

In order to test the method we consider the numerical solution of 

y(x) = A ,fl K(x, z) y(z) dz, P-6) 
0 

where K is assumed to have the three forms 

K(x,z)=O.l(x+z+ 1)5, 

K(x,z)=(x+z)~(x+z+ 1)-l, 

(2.7) 

P-8) 

and 

K(x,z)=x2z+~x(I +z). 

The kernels given by Eqs. (2.7) and (2.8) were studied before in Ref. [3]. The kernel 
given by Eq. (2.9) is specially interesting because it involves the sum of two separable 

TABLE I 

Solution y(x) of Eq. (2.6) for i = 0.15892, W(X) =x2 and I,, = 0.33187 with K Defined by Eq. (2.7) 

Y(X) 

X 

Solution of Eq. (2.3) after 

2 iterations 3 iterations 

Calculated 
from 

Eq. (3.1) 

0.99726 1.03766 1.03766 1.03764 
0.9349 1 0.92524 0.92524 0.92522 
0.79448 0.70774 0.70774 0.70772 
0.58772 0.46418 0.46418 0.46417 
0.33187 0.26134 0.26134 0.26134 
0.0483 1 0.12714 0.12714 0.12714 

Note. The second and the third columns exhibit the iterative solution of Eq. (2.3) after two and three 
iterations, respectively. The last column exhibits v(x) calculated using the solution of Eq. (2.3) in the 
right hand side of Eq. (2.6). In this case using the solution of Eq. (2.3) the overlap integral of Eq. (2.2) 
was found to be equal to 0.99998. 
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terms and for A = 1.0, Eqs. (2.6) and (2.9) have the analytic solution (apart from an 
arbitrary normalization) 

y(x) = 4x2 + 9x. (2.10) 

Note that if the kernel K contains only one separable term then with the choice of y 
given by Eq. (2.5) the kernel K’ of Eq. (2.4) is identically zero and Eq. (2.3) yields 
the exact solution without any iteration. 

Approximate the integrals in all the equations by discrete sums using 16 point 
Gauss-Legendre quadratures between 0 and 1 and solve Eq. (2.3) by its convergent 
iterative series solution. Experimentation revealed that the “best” convergence was 

TABLE II 

Values as in Table I for k = 0.28654, zr, = 0.50690 with K Defined by Eq. (2.8) 

Y(X) 

x 

Solution of Eq. (2.3) after 

2 iterations 3 iterations 

Calculated 
from 

Eq. (3.1) 

0.99726 1.23265 1.23265 1.23263 
0.9349 I 1.02434 1.02434 1.02432 
0.79448 0.65842 0.65842 0.65842 
0.58772 0.31891 0.3 1892 0.31891 
0.33187 0.11102 0.11102 0.11102 
0.0483 I 0.02565 0.02565 0.02565 

Note. In this case the overlap integral of Eq. (2.2) was equal to 0.99999. 

TABLE III 

Values as in Table I for I = 1, zr, = 0.50690 with k Defined by Eq. (2.9) 

Y(X) 

x 

Solution of Eq. (2.3) after 

2 iterations 3 iterations 
Exact 

solution 

0.99726 1.89173 1.89173 1.89173 
0.9349 I 1.73940 1.73940 1.73940 
0.79448 1.41298 1.41298 1.41296 
0.58772 0.97428 0.97428 0.97425 
0.33187 0.50056 0.50056 0.50053 
0.0483 1 0.06486 0.06486 0.06486 

Note. The entry in the last column represents the exact analytic solution given by Eq. (2.10) 
normalized in such a way that for x = 0.99726 the adries in the third and the fourth columns are iden- 
tical. 
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obtained for W(X) =x2 and z0 = 0.33187 for Eq. (2.7) and w(x) =x2 and 
z0 = 0.50690 for Eqs. (2.8) and (2.9). (The point z0 is taken to be one of the 
integration mesh points.) Then solve Eq. (2.3) for a wide range of values of 1 and 
verify whether this solution also satisfies Eq. (2.2). If it does then for this value of A, 
Eq. (2.1) also has a solution which is identical to the solution y(x) of Eq. (2.3). The 
values of 1 so obtained for which Eq. (2.1) has a solution are given by: 
(a) A = 0.15892 for Eq. (2.7), (b)A = 0.28654 for Eq. (2.8), and (c)L = 1.0 for 
Eq. (2.9). (In this last case 1 is analytically known and the solution of Eq. (2.6) is 
given by Eq. (2.10).) Next we verified if the solution of Eq. (2.3) satisfies Eq. (2.6) by 
substituting this solution on the right hand side of Eq. (2.6) and explicitly evaluating 
this term and comparing it with the solution of Eq. (2.3). Numerical results are 
displayed in Tables I-III, which are self-explanatory. 

3. DISCUSSION 

The present method of solving a homogeneous Fredholm integral equation of the 
second kind is simple and a small amount of numerical work yields high precision 
results. In the present method the numerically tedious process of calculation of deter- 
minants and/or diagonalization of large matrices have been avoided. 

The iterative solution of the equivalent inhomogeneous equation (2.3) is expected 
to converge for a proper choice of z0 and y. If the convergence of Eq. (2.3) is not 
satisfactory, we can, following Ref. [3], introduce an auxiliary equation with better 
convergence properties. The solution of (2.3) can then be expressed in terms of the 
solution of the auxiliary equation. The present method and the method of Ref. [3] 
should respectively be considered as viable alternatives for solutions of homogeneous 
and inhomogeneous Fredholm integral equations of the second kind. 
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